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A Quality of Service Approach to Survivability

1 Introduction

Availability is an important property in distributed systems. When a client
process within a distributed system issues a service request to a server during
normal, correct operation, the client receives a response back from the server
after some period of time has elapsed. A service may be said to be available
when the response to a client’s request arrives at the client within some nominal
waiting-time period after the request was sent. The service should be deemed
unavailable to a client when the client sends a request and, within the longest
acceptable waiting-time period, the client receives no reply from the server.
While this problem can be caused by delays in the network between client and
server or within the server itself, in a well-provisioned system a typical cause
for such a problem is that the server process (or the host machine on which
it ran) has crashed, that is, it has ceased to perform any processing at all.




Recovery from a crash failure typically requires the server (and its host, if that
has crashed) to be restarted. If the host has failed due to hardware faults, it
may be impossible to restart the server there until the host’s hardware has been
repaired. In any case, restarting a server is typically a lengthy process, and
unless special steps have been taken prior to the crash, important data stored
in the crashed server may not be recovered. For example, buffering critical data
on a disk drive does not preserve the data during a crash if it is the disk drive
itself that crashes.

The Adaptive Quality of Service Availability (AQuA) project [1, 2, 3, 11,
12] began under the umbrella of Quality Objects (QuO) [7, 14] in September
1996, with the objective of controlling the availability of application services in
the Common Object Request Broker Architecture (CORBA) [6]. The project
focused primarily on the problem of crash failures, and secondarily on other
failures that would cause untimely or incorrect replies to be received by clients.
Under these circumstances, AQuA controls the availability of CORBA services
by replicating servers, that is, by providing multiple, essentially identical copies
of the server operating on different hosts. In this way, the failure of any one
copy of the server or of its host tends to be masked by the correct operation of
other copies of the server.

The AQuA team consisted of the following partners:

e The Distributed Systems Department of BBN Corporation [4] a group
with depth and breadth of experience in implementing distributed sys-
tems, and the prime contractor of the QuO project.

e The Performability Engineering Research Group at the University of Illi-
nois at Urbana-Champaign (UIUC) [10] with expertise in the design and
analysis of dependable distributed systems.

e The Ensemble Project at Cornell University [5] a provider of tools for
group communication in distributed systems.

Cornell University provided and supported the Ensemble toolkit used in AQuA;
additional software to provide the desired CORBA functionality over Ensemble
was developed jointly by BBN and the University of Illinois. Furthermore, both
BBN and the University of Illinois developed example applications over AQuA.

2 Project History

The AQuA project proceeded in three major phases, each approximately one
year in duration.

¢ During the first year, the design goals of the project were firmed up, a
variety of possible implementations were investigated, work was coordi-
nated with the overall QuO project to ensure compatibility between the
two projects, and an initial prototype was developed.




e During the second year, the first implementation of the system was com-
pleted.

e During the third year, the AQuA system was improved and extended to
new capabilities, and the technology was transferred to outside organiza-
tions.

The following sections describe this process in more detail.

2.1 The First Year

A series of meetings were held at BBN, Cornell, and UIUC with PIs and develop-
ers at BBN and the subcontractors. These meetings identified the components
to be used in an initial system implementation, and who would provide them.
The initial implementation called for the use of Electra [8], a replication-aware
ORB to be supported by Cornell University, with BBN integrating this into the
overall QuO architecture.

Additional discussions were held between the AQuA team and potential
users of dependable CORBA objects, notably the HiPer-D project at the Naval
Surface Warfare Center in Dahlgren, VA.

In addition, UIUC began work to build tools to experimentally validate such
systems, and the team at BBN coordinated with the emerging development of
the QuO architecture to ensure that the needs of AQuA would be supported in
the earliest versions of that architecture.

During the course of the first year, it was found that Electra was unsuitable
as a mechanism for AQuA (more detail can be found in the section on Lessons
Learned). A prototype was developed that simulated CORBA calls using the
Ensemble group communication system from Cornell. This prototype demon-
strated the ability to survive and recover from the crash failure of any subset
of server replicas, provided that at least one replica of the server survived to
preserve its data. Furthermore, using Ensemble, crashed server replicas could
be replaced seamlessly by new replicas started on any available hosts in the net-
work, or, when the crashed host became available again, it could be reintegrated.
This system was demonstrated in September, 1997.

In addition, a fault injector prototype based on Troll (from the University
of Wisconsin, Madison) was developed at the University of Illinois in order
to evaluate Ensemble. - Crash failures and delays were injected through UDP-
datagram losses and delays. Faults were injected per host and per link. The
preliminary results presented in July 1997 showed that the lack of precision of
the injection time led to great imprecision in the observations.

2.2 The Second Year

Following the results of our investigation into Electra, the AQuA team revised
its research plan. BBN developed an initial version of a “gateway” over the
Ensemble/Maestro system, with support from Cornell. The initial version of this
gateway was then transferred to UIUC, and further developed jointly by BBN
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and UIUC. In addition, UIUC designed and built the first version of Proteus,
the AQuA property manager for dependability. (The gateway and Proteus are
described in further detail in the section on Implementation Details.)

The AQuA project continued to meet with members of the HiPer-D project
during this period. Further, in order to promote the development of commer-
cial ORBs with dependable objects, BBN participated in the development of a
Request for Proposals (RFP) for Fault-Tolerant CORBA at the Object Man-
agement Group (OMG).

Sample applications were developed at BBN and UIUC to demonstrate var-
ious aspects of the AQuA architecture. A slide-show (“Bette”) example de-
veloped at BBN demonstrated the ability to make traditional RPC calls that
passed large data sets (each call retrieved a large image file from the server), and
demonstrated the full integration of the dependability property into a QuO con-
tract. A capture-the-flag (“castle”) demonstration developed at UIUC showed
the dependability management of Proteus, through the crashing and automatic
restarting of several replicas of the same replication group and of different repli-
cation groups. During the various steps of failure, failure detection, and recov-
ery, the distributed castle application continued to work, showing that Proteus
managed dependability in a transparent way. These demonstrations were pre-
sented at the Quorum PI meeting in July, 1998.

Following the conclusion about the fault injection experiments performed at
the end of year one, and because UIUC could not find a fault injector fulfilling all
our needs, UIUC designed a fault injector (called Loki) that would provide more
precision in how faults were injected. The design is based on two main ideas.
First, fault injection is performed based on the state that different components
of the distributed system are in. Second, an analysis is done offline to check if
the fault has been properly injected.

2.3 The Third Year

During the third year of AQuA, continuing work on managed bandwidth (pre-
viously funded under the Dynamic Integrated Resource Management (DIRM)
project) was funded by AQuA, in addition to the ongoing dependability-related
design and validation work. Work was also performed on the combination of
bandwidth management with dependable (replicated) objects.

A version of AQuA was released in October, 1998 for use with the QuO 1.0
release of September, 1998.

BBN investigated CORBA object references and found issues that compli-
cate the creation of references to objects with QoS attributes, either availability
or bandwidth. Steps were taken to overcome some of the problems resulting
from the CORBA specification in this area.

BBN integrated a highly-available object (using caching) with QuO instru-
mentation facilities in order to adapt the use of the server to usage needs at
runtime. Specifically, when the server’s host was heavily loaded by a higher-
priority application, data was taken from the cache even though the server




was nominally available. This work was demonstrated at the Quorum /HCC PI
meeting in February, 1999.

BBN continued the promotion of commercial development of Fault-Tolerant
CORBA, both by speaking on proposals at the OMG and by meeting with
proposers at the February PI meeting.

BBN significantly improved the use of object names within AQuA, imple-
menting name-service features on the AQuA gateway to enable replicated ob-
jects to find the correct object references at run time rather than requiring static
configuration files.

UIUC added a new communication scheme to Proteus able to tolerate crash
failures using passive replication. This communication scheme is simpler than
the active replication one, since only the leader processes the requests /replies
and multicasts its state after each request/reply.

UIUC added an active replication communication scheme and a voter in
order to tolerate value faults from the application and/or QuO. The commu-
nication scheme is similar to the one developed for crash failures. The main
difference is the voter that votes on all messages to check if a majority has been
reached. Moreover, the voter stores messages arriving after the majority vote
in order to detect potential value faults on all replicas of the group.

UIUC developed a complete interface to the Proteus dependability manager.
Using this interface, an application or a QuO programmer can 1) request a
particular level of dependability, 2) be notified when that level is no longer met,
3) obtain information concerning hosts managed by Proteus and give advice
regarding the hosts on which the manager places replicas, and 4) obtain detailed
information regarding decisions that the dependability manager makes, and the
faults that it detects.

BBN implemented an RSVP control object over the ACE operating system
layer from Washington University in St. Louis, using code developed by our
subcontractor at Columbia University.

The AQuA release was fully integrated with the QuO release process and a
simultaneous release of both systems occurred in May 1999. Additional AQuA
functionality developed through the end of the contract continued to be incor-
porated via the QuO release process, and will be available with the next QuO
release.

UIUC completed an implementation of Loki in August 1999. The current
version of Loki integrates the various components of Loki [2] except the parts
related to the processing of the measures. A GUI provides the user with an easy
way to describe the distributed application and the fault injection campaign and
to observe the obtained results.

3 Final Status of the Project

A complete AQuA system has been released and has been transferred to users
in the Quorum program. An improved version of this system has been released
as part of the overall QuO software release, and again transferred to users. The




final version of AQuA developed under this contract will be released as part of
the QuO Integration project, and will have the following features, among others:

e Users can replicate either the sender or the recipient of a request (client
or server), or both.

e Users can instantiate many distinct replicated objects as part of an appli-
cation.

e Multiple applications can be configured on the same set of host systems,
using the same copy of AQuA.

o A replicated object can send or receive replies from multiple other object
instances, including replicated objects.

o Replicated servers can also act as clients.

o Users can create multiple different object instances of the same type, each
instance having multiple replicas.

e For each replicated object, a user can specify the type of fault (value
and/or crash) to be tolerated by that object, and how many simultaneous
faults are to be tolerated.

e Users can make QoS requests to the dependability manager and can receive
callbacks regarding the ability of the dependability manager to satisfy the
requester’s requests.

o Users can “subscribe” to a variety of information used by the dependability
manager to make decisions, including information about faults detected
and fine-grain information regarding actions taken by the manager.

s Users can receive information regarding the status of hosts that may be
used to execute object replicas, and that can be used to make requests
regarding which hosts can be used to execute replicas.

e Objects can tolerate crash failure faults or value faults.

e Objects can implement fault tolerance by means of either active or passive
replication protocols.

Finally, the operation of the AQuA transport mechanism over wide-area
networks by means of reserved-bandwidth channels was investigated, and rec-
ommendations have been made for further improvements in this area.

4 Implementation Details

AQuA adds a specialized transport mechanism and property manager to the
QuO programming environment.




4.1 The Ensemble Group Communication System

Ensemble is a system for group communication developed at Cornell University.
Ensemble provides communication paths with strong semantics over various
existing lower-level interprocess communication protocols, such as TCP/IP and
ATM. The current implementation of AQuA uses UDP as its low-level protocol.

An Ensemble protocol adds properties to its underlying protocol by adding
several “micro-protocol” layers on top of the substrate. These layers optionally
can provide some or all of the following properties:

e Group membership, allowing a process to join or leave a group and to
obtain a group view with information about the number of members cur-
rently in the group.

e Point-to-point messages between two members of a group.

e Multicast messages sent by any one member and received by all other
members of the group.

e Sending and receiving arbitrarily large messages at the user level (Ensem-
ble performs the necessary fragmentation and reassembly).

e FIFO ordering of messages, guaranteeing that messages will not be dropped.

e Total ordering of messages, guaranteeing that all group members will see
the messages in the same order no matter which members sent the mes-
sages.

e Virtual synchrony, guaranteeing consistency in message delivery when
member processes crash or leave and the group view must be changed.

Furthermore, AQuA was programmed over the Maestro interface to Ensem-
ble, which provides a C++ object interface to support group communication.

4.2 The AQuA Gateway

The AQuA implementation routes CORBA requests through a gateway, which
is implemented in C++ over Maestro/Ensemble [13].

Each replica of an object in AQuA is run in its own process over any standard
CORBA ORB. In current practice, the ORB used is Visibroker for Java. Along
with each object process, a gateway process is run in one-to-one correspondence.
The gateway is coded in C and C++ over Maestro/Ensemble. In order to ensure
atomicity of failure in case of a host crash, each object replica and its associated
gateway process are placed on the same host.

The object processes themselves perform all communication in AQuA via
ordinary CORBA Internet Inter-Orb Protocol (IIOP) messages to or from their
associated gateway processes. At startup time, the object and its gateway
use CORBA to interchange object references: the gateway obtains an object
reference to the servant (if any) implemented by the object process, and the




object process obtains references to any other objects it might call through
AQuA, each such reference routing the request to the gateway.

During subsequent processing, CORBA calls between AQuA objects are ini-
tiated by ordinary method calls on CORBA object proxies in client processes,
which are transmitted via ordinary CORBA /IIOP protocols to the associated
gateway. Within the gateway, an IIOP adapter exchanges appropriate informa-
tion about the IIOP headers and message bodies with a dispatcher, which in
turn interacts with handlers that implement protocols for communication be-
tween replicas of objects and provide fault tolerance. Different handler instances
are used for each client-server combination, and different handler types may be
used to implement different replication properties, such as active vs. passive
replication.

A typical handler implementation is as follows. To implement a replicated
object, the gateways associated with the replicas of the object all join a single
totally-ordered group (replication or object group) in Ensemble. There is a
separate object group for each object that is replicated in AQuA.

For each possible client-server or peer-to-peer interaction, there is a FIFO-
ordered Ensemble group (connection group) that includes all replicas of the two
objects on either side of the interaction. There is a separate connection group
for each possible pair of objects that might interact, and for each direction in
which requests might be sent between those two objects.

A request (and the corresponding reply, if any) therefore passes through
at least two gateways, one associated with the client and one associated with
the server. Several handlers have been developed. Each handler is specific to
a communication scheme (cf., Section 5.5). In the case of active replication
tolerating crash failures, the client-side gateways collate copies of the request (if
the client is replicated) using the client’s object group, and forward the request
via the appropriate connection group so that it is received by the servers. A
final retransmission of each request over the server’s object group ensures that
each server replica receives requests in identical order even if they were sent by
completely different clients.

Failure of one copy of an object will cause the gateways of other objects to
resend buffered messages as needed to prevent failure of any requests in progress.
As requests complete, the buffers used for their retransmission can be deleted.

4.3 The Proteus Dependability Manager

The property manager in AQuA is Proteus [12], a system that manages de-
pendability of objects by means of replication. A QuO contract associated with
an AQuA process or an application process itself can issue requests to Proteus
requesting that a named service be provided with the ability to tolerate a spec-
ified number of faults of a specified type. The fault types that may currently be
tolerated are faults due to crash failure of a process and faults due to incorrect
values being returned by a single process in response to a service call. Proteus
informs the QuO contract or application that made the dependability request




when the requested property is satisfied, and when it is not satisfied, so that
the contract may make appropriate transitions between operating regions.

Proteus satisfies property requests by creating a sufficient number of replicas
of the requested object, each replica on a different host. The list of permissible
hosts to use is read by Proteus at startup time and can be temporarily restricted
at any time during Proteus’s execution. The Proteus dependability manager and
factories use their own AQuA gateways to communicate; specialized handlers
in these gateways provide highly scalable communication between these compo-
nents and other AQuA applications, and gather data on AQuA applications as
required by Proteus.

In order to run Proteus, a dependability manager process must be started,
and on each host where replicas of user objects might run, a Proteus factory
process must be started. In the current implementation, the dependability man-
ager is not replicated and is not itself dependable, although user applications
will continue to function after failure of the dependability manager as long as
replicas of those objects exist. Since the Proteus processes themselves all use
AQuA gateways for communication, however, several options exist for future
work to make Proteus itself dependable.

As part of the AQuA system, Proteus implements extremely flexible run-
time control over the dependable operation of a replicated object. The desired
Jevel of fault tolerance can be adjusted upward or downward after the object has
been started; as this is done, replicas of the object will be created or destroyed
seamlessly (without interfering with the stored data or continued functioning
of the object) as required to maintain the requested level of fault tolerance.
However, there may not be enough hosts available to run the replicas required
to support the requested level of fault tolerance. When the request cannot be
fulfilled (either when requested, or during a later period of time), Proteus alerts
the QuO contract so that other corrective action, if any, may be taken.

The selection of permissible hosts where replicas may be run is also variable
at run time. Users may dynamically restrict processing to prevent it from occur-
ring on certain suspect hosts, or may lift such restrictions, during the object’s
processing. Restriction of a host on which an object replica resides will cause
that replica to be eliminated from its replication group, and replaced by a new
replica on a permitted host, if any is available.

4.4 The Loki Fault Injector

UIUC developed a validation approach for the AQuA architecture using fault
injection. However, UIUC could not find an existing fault injector adequate for
the architecture. Existing fault injectors do not allow an accurate fault injection
based on the state of specific parts of the system. Moreover, no existing fault
injector checked afterwards to see if the injection was properly done. These two
deficiencies led to the decision to build a new fault injector, which we call Loki.

Loki injects faults based on the partial view of the global state of the dis-
tributed application. The idea is that a fault injector for distributed systems
must be aware of the states of different parts of the system (not just the state of




the local node), without knowing the state of all the parts of the system. The
local state on a node is described using a state machine. The various nodes
are connected through a network in order to communicate the local state to
the nodes that need it to build their partial view of the global state. The fault
injection depends on that partial view of the global state. However, because of
the delay needed to exchange a message, the fault injection might occur when
at least one of the nodes in the partial view is already in a new state. Each
injection must thus be checked. This is done off-line, where the events from
each node are projected on a single timeline. A software clock synchronization
approach has been used to order events from different nodes on one timeline.
Moreover, physical bounds are calculated for each event, ensuring that the event
really occurred sometime in that interval. After being projected on the single
timeline, the ordering and overlapping of these event intervals are analyzed to
verify that the fault was properly injected. Finally, statistical features are used
to calculate various measures resulting from the fault injection campaign. For
more details, see [2].

5 Research Results
5.1 CORBA Standards for Names and References

As a general rule, the common denominator of all CORBA reference schemes is
the Interoperable Object Reference (IOR). An IOR uniquely identifies a servant
that provides an active (currently running) implementation of some object. This
identification includes three essential pieces of data:

e The IP address of the host on which the servant is running,

e The port number of a port on the servant’s host to which requests to the
servant should be sent.

o An object key. The object key is used by the process running the servant to
identify that servant uniquely among all possible servants that the process
might run.

There are facilities in CORBA for a client object to gain access to a servant
even when the client does not yet hold a correct IOR. For example, a process
receiving a request on a service it no longer implements can return the client
a forwarding address for that service (in essence, the IOR of a new servant
implementing the service elsewhere), although this scheme does not work if the
old servant’s process has simply crashed. Alternatively, a client can refer to a
service by name, and access the named service with the help of a CORBA name
server. This scheme requires the servant’s process to register the correct IOR
for the servant under the correct name.

There is no special support in CORBA to ensure that the servant returned
by the name server at any given time is an accurate representative of the servant
returned to a previous request. That is, suppose the old servant has crashed (or
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has shut down silently) and a new servant has been created and registered with
the name server. The name server cannot tell a client whether the new servant
is a proper continuation of the old servant (that is, it has recovered the essential
state information from the old servant) or whether it is essentially a completely
new instance of the service (having lost all information that was recorded by
the old service).

There is not yet support in CORBA for various standard techniques for
using process replication to make services fault-tolerant. A standards process
aimed at this goal is under way at the OMG as of August, 1999. We expect the
outcome of this process to be a set of commercial toolkits that allow CORBA
calls to be made to or from replicated objects, most likely with the proviso that
both client and server must be coded to the toolkit. The toolkits for fault-
tolerant operation are very likely to be more or less incompatible at first with
other added-value features that may be desired by CORBA programmers.

Some of the difficulty of fault-tolerant CORBA processing lies in the very
nature of the IOR. Many forms of replication require that the client’s request
be delivered to all replicas of the server, not just to one address. When one
replica of the server fails due to a host crash (a typical scenario to be handled
by fault-tolerant CORBA), there cannot be a forwarding agent listening to the
port specified in the IOR of the failed replica. What a client of a replicated
service needs in such cases is not the address merely of a single replica, but the
address of a group, an identifier that is mapped (via the appropriate services;
in AQuA the Ensemble “gossip” name server is used) to the set of all replicas
currently in existence, a mapping that is changed from time to time as replicas
disappear or are added to the group.

The approach to this problem in AQuA was to interpose gateways between
clients and servers. In this scheme, a (possibly replicated) CORBA object ac-
cesses all other (possibly replicated) CORBA objects through a gateway process
located on the client object’s host. The client object holds an IOR for each ser-
vice in this scheme, but all such IORs point to the same IP address and port
number, where the gateway is listening. The object keys in these IORs are
plain text strings to which the gateway attaches prefixes and suffixes according
to fixed rules to obtain a group name in the Ensemble group communication
system. Ensemble is then used to distribute copies of requests to all group mem-
bers (gateways associated with each replica of the server), which forward the
requests to the actual IORs used by the actual servant replicas. Thus, although
CORBA requests use some GIOP features (for example, CDR, formatting of
the request body) throughout a remote method call, the actual IIOP protocol
is used only locally (between CORBA object replicas and their own associated
gateways), while Ensemble is used for all distributed communication between
hosts. Of course, when it is known that neither client nor server is replicated
for fault tolerance, the gateway need not be used, and requests may be sent us-
ing ordinary CORBA techniques, even from a client that at other times makes
requests to replicated servers.

The use of gateways eliminates many of the failures that would otherwise
be associated with IORs held by CORBA clients, but introduces an important
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problem of its own, namely that an object reference held by one object (that
is, an IOR pointing to its own gateway) cannot be used by any other object.
In order to access other objects through the gateway, a client must be aware
that either itself or the desired server is replicated for fault tolerance, and must
send a request to its own gateway for the server named by a particular plain
text string. The gateway then acts as a private naming server for this client,
returning an IOR. (pointing to the gateway itself) that should be used to send
requests to be forwarded to the server. CORBA provides no support for passing
such references correctly to other processes, though of course application-specific
code may work around this problem by passing the plain text strings that other
objects should use in requests on their own gateways in the current version of

AQuA.

5.2 Replication of Objects over a Wide-Area Network

Using group communication or other mechanisms to support active replication
is typically not considered practical over a wide-area network (WAN), because
frequently the bandwidth between group members is low and the variance in
message latency is high. Both of these phenomena make it difficult to maintain
a group with a consistent membership list and consistent application state.

BBN Technologies investigated the feasibility of placing the replicas of a
fault-tolerant object on hosts distributed over a WAN. The test configuration
was to send Ensemble traffic using UDP as the transport between two hosts on
different LANs connected by a WAN. The WAN consisted of two Cisco routers
connected by a 1.3Mbps serial link. In addition to the Ensemble traffic, a
competing test program generated cross traffic in two separate flows in sufficient
volume to completely consume all the available link bandwidth. The routers had
a buffer size of 64 packets. Tests were performed sending various size Ensemble
messages under two sets of conditions: in the “RSVP” case, the routers would
reserve 1.0Mbps bandwidth for the Ensemble flow using RSVP; and in the “no-
RSVP?” case, no reservation was made for Ensemble traffic. The routers used a
fair-queuing algorithm, so in either case the Ensemble traffic was guaranteed to
get some of the available bandwidth.

Our tests uncovered two important properties of Ensemble over RSVP:

1. Ensemble is very sensitive to the amount of buffering in the routers. When
the Ensemble message size got over a certain size, a “congestion collapse”
occurred and the effective throughput of Ensemble dropped quickly.

2. RSVP bandwidth reservation improved Ensemble throughput, i.e., iso-
lated the Ensemble traffic from the cross traffic. But RSVP did not im-
prove throughput for message sizes beyond the congestion collapse.

Figure 1 shows the results of two network configurations with and without
RSVP reservations. For both the RSVP and no-RSVP cases, the throughput
increased as the message size increased up to the point where the router buffers
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Figure 1: Performance of Ensemble over RSVP

were full. At this point the router would start dropping packets. When a sin-
gle message (approximately 1400 bytes in these configurations) was dropped,
Ensemble would interpret this as a transmission failure of the entire Ensemble
message (hundreds of kilobytes in some cases), and would retransmit the en-
tire message, including packets previously transmitted successfully. Thus, the
throughput dropped drastically.

The RSVP flow did get more throughput below the congestion collapse point
because the RSVP reservation allowed more Ensemble messages through than
cross traffic. The congestion collapse point for RSVP and no-RSVP is about the
same because the routers’ buffers are evenly divided between flows, regardless
of the RSVP reservation (ignoring the RSVP burst size).

These results have several implications for future work with AQuA over a
WAN. The first is that RSVP was successful in maintaining Ensemble group
communication at a fairly high level of throughput in the face of heavy compet-
ing traffic flows. The second is that additional work will be required to support
AQuA applications that have very large requests or replies, such as when a
large object is passed by value. Provision must then be made either in the En-
semble stack or in the AQuA gateway’s handlers to control data flow so as to
avoid the congestion collapse point, if necessary by breaking up large requests
or replies into segments. In addition, a small re-implementation within the En-
semble stack should be able to eliminate or reduce the need for re-transmission
of packets that were not dropped.

5.3 Applications to Intrusion Detection

As the result of development efforts at UIUC and BBN, it proved possible to
use AQuA to monitor the possible effects of a hostile intrusion into the system
under its control as well as to maintain dependable services. Specifically, Proteus
detects and provides an interface for other objects to monitor numerous process
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events that are of interest to intrusion detection systems. BBN was able to
exploit this synergy to integrate AQuA into a demonstration intrusion detection
system under the QuO effort, and to incorporate this demonstration into the
QuO release under the name AQuA IDS (aquaids).

5.4 Design of Multiple Groups

In the AQuA architecture, the basic unit of replication is a three-process pair,
consisting of an application, gateway and QuO runtime. A basic replication
unit thus contains several distributed objects, but we refer to it as an AQuA
object. Furthermore, when we say that an ”object joins a group” we mean that
the gateway process of the object joins the group. Mechanisms are provided to
ensure that if one of the processes in the object crashes, the others are killed,
thus allowing us to consider the object as a single entity that we want to make
dependable. Four group types are used in the AQuA architecture: replication
groups, connection groups, PCS (Proteus Communication Service) group, and
point-to-point groups.

A replication group is composed of one or more replicas of an AQuA object.
A replication group has one object that is designated as its leader and may
perform special functions. Each object in the group has the capacity to become
the object group leader, and a protocol is provided to make sure that a new
leader is elected when the current leader fails. To maintain a group, Ensemble
uses protocols that use group leaders. For implementation simplicity, the object
whose gateway process is the Ensemble group leader is designated the leader of
the replication group. This allows Proteus to use the Ensemble leader election
service to elect a new leader if the object leader fails. A connection group is
a group consisting of the members of two replication groups that wish to com-
municate. A message is multicast within a connection group in order to send a
message from one replication group to another replication group. Reliable multi-
cast to the dependability manager is achieved using the Proteus Communication
Service (PCS) group. The PCS group consists of all the dependability manager
replicas in the system. The PCS group also has transient members. These tran-
sient members are object factories, AQuA applications, or QuO objects that
want to multicast messages to the dependability manager replicas. Through
the PCS group, AQuA applications provide notification of view changes, QuO
makes requests for QoS, and object factories respond to start and kill commands
and provide host load updates. A point-to-point group is used to send messages
from a dependability manager to an object factory. Each object factory is in
its own point-to-point group. When the dependability manager wishes to send
a message to the receiving object factory, the dependability manager joins the
group of that object factory.

The choice of having multiple groups is a design choice made to avoid having
to manage one large group. A view change concerning any member of a large
group would request to freeze all other members of the group. Moreover, if their
tasks are very different, some members that are frozen might be only indirectly
concerned by the view change. We chose to define a collection of group types,
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each one having a different role. Therefore, a view change will freeze a smaller
number of objects. Moreover, the objects in each group type have a similar task.
Finally, this group structure allows any two objects to communicate using the
advantages of group communication systems without having one large group.

5.5 Tolerating Crash and Value Faults using Active and
Passive Replication

The AQuA architecture has been designed to tolerate different fault types (i.e.,
crash failures, value and time faults) using various replication schemes (i.e.,
active and passive). UIUC has implemented three different schemes in Proteus:

e Toleration of crash failures using active replication and a voter with a pass
first policy.

e Toleration of crash failures using passive replication.

e Toleration of value faults and crash failures using active replication and a
voter with a majority policy.

For each case, a specific communication scheme has been designed and im-
plemented. In addition, in some cases, a specific voter has been developed. A
simple voter with a pass first policy is used for tolerating crash failures using
active replication. Since only the leader processes the requests/replies, there
is no voter when using passive replication. Finally, for tolerating value faults
and crash failures, a voter has been implemented on each replica to vote on the
received messages in order to reach a majority value.

Let us now detail the three communication schemes and the voter associated
with the scheme. Let O; x be replica k of replication group ¢, and let object O; 0
be the leader of the group. Suppose that replication group i is the sender group
and group j the receiver group. To send a request to the object replicas Oj .k,
the communication steps vary depending on whether only crash failures have to
be tolerated, or if value faults (and crash failures) have to be tolerated.

5.5.1 Active Replication for Tolerating Crash Failures

The first communication step consists of all objects O;x using reliable point-
to-point communication to send the request to O;p (step 1). The leader then
multicasts the request in the connection group (step 2). Since there can be
multiple replication groups, in order to maintain total ordering of all messages
within the replication group, Oj,0 multicasts the message again in replication
group j (step 3). After processing the request, all objects Ojx send the result
through a point-to-point communication to Ojo (step 4). The same set of
steps used to transmit the request is then used to communicate the reply from
replication group j to group i. Steps (5) and (6), which are responsible for
transmitting the reply, are similar to steps (2) and (3) respectively.
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Each replica has a voter, but only the voters of the replication group leaders
are active. All messages received by the leader go through the voter. The task
of the voter is to multicast the first message it receives.

5.5.2 Passive Replication for Tolerating Crash Failures

The first communication step prescribes that the leader O; ¢ multicast the re-
quest and the state in replication group i (step 1). The leader then multicasts
the request in the connection group (step 2). After processing the request, the
leader O; o multicasts the result and the state in replication group j (step 3).
Finally, the leader multicasts the reply in the connection group (step 4).

No voter is used in passive replication since only the leader processes the
requests/replies.

5.5.3 Active Replication for Tolerating Crash and Value Faults

The first step consists of all objects O; » multicasting the request in replication
group i (step 1). The leader then multicasts the request in the connection group
(step 2). Since there can be multiple replication groups, in order to maintain
total ordering of all messages within the replication group, O;,0 multicasts the
message again in replication group j (step 3). After processing the request, all
objects O;x multicast the result in replication group j (step 4). The same set
of steps used to transmit the request is then used to communicate the reply
from replication group j to group i. Steps (5) and (6), which are responsible
for transmitting the reply, are similar to steps (2) and (3) respectively.

Each replica has a voter. Depending on the number of faults to tolerate, the
corresponding required majority is calculated. Each voter checks each received
message to see if the number of messages agreeing on the content have reached
the majority. If the majority is reached, the replica multicasts the majority
value. However, the voter continues to store the messages corresponding to
the sequence number of the majority value. This is done in order to detect all
value faults. When the replica receives a message whose sequence number is
such that no other message with the sequence number of the majority value can
be received, the voter checks the content of the former received messages and
communicates to the dependability manager the names of the replicas that have
sent messages whose values are different from the majority value.

5.6 Use of Partial View of the Global State in Fault In-
jection

The concept of partial view of a global state has been introduced during the
design of Loki. This original concept is fundamental for accurate fault injections
in a distributed application. In most distributed systems, each component only
knows the state of the other components in the system at the time of synchro-
nized events. At other times, knowledge of the state of any given component
by other components is not guaranteed. In order to evaluate and remove faults
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in a fault-tolerant distributed system, it may be necessary to inject faults in a
component based on the state of one or more other components, even at a time
when the complete state of the system is unknown. To inject such faults, it is not
necessary to know the global state of the system at all times; instead, a “partial
view” of the global state of the system is sufficient. Informally, we mean the
state of “interesting” components and knowledge of “interesting” state changes.
The portion of state that is interesting depends on the particular system being
studied and the faults one desires to inject.

With this in mind, a distributed system can be subdivided into the pieces
that are necessary for a given fault injection campaign. These pieces, which
include both the portions of the distributed system into which faults are to be
injected and the parts from which state information must be obtained, are called
nodes. The Loki run-time architecture provides a framework for maintaining a
partial view of the global state using a set of nodes, and for conducting fault
injections using that partial view of the global state. More specifically, Loki
maintains a partial view of the global state by using state machines associated
with nodes that communicate with one another. Each node in the system is
coupled with a state machine that tracks the state of that node relevant to the
fault injection campaign. These state machines send state change notifications
(messages containing information about the global state of the system) to sub-
sets of all of the state machines in the system as necessary to maintain the
partial view of the global state needed for fault injection.

Because Loki is designed to be as non-intrusive to the application as possible,
it does not block the system under study while waiting for a notification to arrive
at another state machine. Accordingly, a system may actually change state again
by the time a state change notification reaches its target state machine(s). This
implies that the partial view of the global state seen by Loki is not always
correct. The correctness of a particular state is determined by the holding time
of the global state and the time needed to transmit a notification after the
state is reached. Any fault injection based on a global state of the system must
thus be checked after the experiment is completed, to see whether the fault was
injected as intended.

In summary, the two central innovations of Loki are the provision of a mecha-
nism for recording and sharing a partial view of the global state between nodes
in a distributed system, and the development and application of a theory to
determine whether a fault injection that depended on the partial view of the
system global state was done correctly. Together these give us the ability to in-
ject correlated faults into a distributed system efficiently and predictably. To the
best of our knowledge, it is the first successful attempt to provide this function-
ality. Furthermore, as shown by the experimental results that we have obtained
[2], we can successfully inject an increasing percentage of intended faults as the
time spent in a chosen state increases. More importantly, we can identify the
experiments that led to successful injections, and use these experiments in fault
removal and/or dependability assessment activities.
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6 Lessons Learned

The AQuA team learned a number of lessons during the course of the AQuA
project. In this section, we discuss the results obtained, arranged by topic.

6.1 Replicated CORBA Objects: a Nascent Technology

We learned that adequate technology to support replicated objects under CORBA
is not yet generally available. This conclusion is more pessimistic than the ex-
pectations at the outset of the AQuA project, when it was expected that such
technology would prove to be available either at the beginning of the project or
during the first year.

6.1.1 The Demise of Electra

At the outset of the AQuA project, a system known as Electra had already
been developed at Zurich University in Switzerland (and further refined at Cor-
nell University) to support CORBA requests on replicated objects. Electra,
however, requires an underlying mechanism to implement group membership
and multicasting of messages, and at that time the only such mechanism in use
was Isis, an older group communication system for which support was being
withdrawn. In theory, Electra was supposed to be portable over other group
communication mechanisms such as Ensemble; in practice, however, Electra
proved to make hidden assumptions about group membership properties that
were not supported by Ensemble. Worse still, while Electra provided support
for requests made to a replicated object, it provided no apparent support for
requests made from a replicated object, as might occur in a distributed system
having more than two layers in the call tree.

As a result, after an extensive investigation, we decided to abandon plans
to use Electra in the AQuA project. A similar decision was made by the Nile
project at the University of Texas, whose researchers rejected plans to port their
software from Isis to Electra over Ensemble. .

6.1.2 Slow but Steady Progress at the OMG

We expected (and continue to expect) that commercial vendors within the OMG
will support replication of CORBA objects. ORBs supporting replication have
been implemented, most notably Eternal [9]. BBN was directly involved in the
call for proposals and later stages in the development of a CORBA standard for
fault tolerance (availability), beginning in December 1997. As of August 1999,
a standard is under development, but at the request of the vendors involved,
the vote on the standard has been postponed multiple times. As a result,
no CORBA standard product is available at this time, although preliminary
implementations (which may or may not meet the eventual standard) exist.
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6.2 The Usefulness of Gateways

The gateway concept, as recognized in CORBA standards, proved to be a very
useful research and development tool. This technology enabled us to implement
both AQuA replicated objects and (in separately-funded work) CORBA objects
over links whose bandwidth was managed by RSVP, using a common core of
technology to interface to and adapt CORBA protocols in both projects. Fur-
ther, this approach promoted greater use of commercial off-the-shelf (COTS)
software, because it allowed clients and servers to run over standard ORBs such
as Visibroker (with QuO layers added as necessary) rather than requiring a
completely new specialized ORB (which would almost certainly be relatively
inflexible) to provide properties such as dependability.

6.3 More Work Needed on Wide Area Networks

While our investigations into wide-area transport showed promise, they also
showed that more work is required in this area. Group communication over the
wide area has long been disparaged as impractical, and so development in that
area appears to have lagged. Reservations via RSVP appear to be capable of
improving the wide-area performance of group protocols substantially, but some
additional development of the protocols (e.g., the Ensemble stack) appears to
be called for if further progress is to be made in this area.

6.4 Lack of Fault Tolerance in Group Communication Sys-
tems

Most group communication systems, including Ensemble, are based on the as-
sumption that processes fail by crashing, but no mechanism is implemented to
ensure that processes fail only by crashing. Furthermore, recovery by automat-
ically starting new processes on the same or different hosts is not implemented
in the protocol stack. Instead, it is left to the application. A fault tolerance
framework is thus necessary to tolerate other fault types and provide more so-
phisticated recovery mechanisms than process exclusion. The framework could
be implemented at the process level by implementing further fault tolerance in
Ensemble. However, in order to be independent of any particular group commu-
nication system and to fully use the features offered by CORBA applications,
we have provided additional fault tolerance above the group communication in-
frastructure. The framework we have developed is able to tolerate crash failures
of processes, as well as value and time faults of CORBA objects.

7 Future Work

A number of research directions that were begun under the AQuA project are
being pursued, or have great potential to be pursued fruitfully, under future
funding efforts, including the Quorum Distributed Object Integration project.
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7.1 Integration of an ORB in the Gateway

BBN has made investigation into replacing the internally-developed CORBA
module of the various QuO gateways (including AQuA’s) with portions of the
TAO ORB from Washington University at St. Louis. This development has
only recently become possible because of more open interfaces in CORBA, by
which the gateway might use the ORB in its own process space to obtain a
copy of a CORBA request (from a client’s ORB) for forwarding, rather than
(inappropriately) unmarshalling the request in the gateway. This represents a
significant improvement over the previous “interceptor” standard, which was
inadequate for the needs of AQuA as well as other QuO applications.

The use of TAO also promises to enable a standards-based integration of
the AQuA gateway handlers into the object processes themselves, that is, to
replace the current CORBA calls to gateways with in-process method calls.
A non-TAO prototype of such a system was constructed at UIUC, and the
technology is expected to reduce the overhead of AQuA remote method calls.

7.2 Replication over Wide-Area Networks

As described in the previous section on Lessons Learned, preliminary investi-
gations into replication over a wide-area network indicate that QuO has the
potential to improve performance in this area. Due to the underdeveloped na-
ture of previously existing software in this area, however, additional work will
be required if this potential is to be fully developed.

7.3 CORBA Object References

The section on Lessons Learned described shortcomings of basic CORBA object
references. Work is in progress within the ongoing Quorum Distributed Object
integration project to use the flexibility of the QuO architecture to overcome
these shortcomings.

7.4 Port ‘AQuA Architecture to NT

This work would result in a release of the AQuA components, including the
Proteus dependability manager, the factories, and the gateways that run on
NT. The current release is for Linux.

7.5 Evaluation and Enhancement of Current Architecture
Performance

This work would provide testing and analysis to determine precisely the current
performance of different parts of the AQuA components, to determine AQuA’s
current performance bottlenecks, and to investigate ways to improve its perfor-
mance.
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7.6 Make the Proteus Dependability Middleware More
Dependable

In the current implementation, an application will continue to run dependably if
the dependability manager or a factory fails, but the dependability manager or
factory will not restart. This work would make the dependability manager and
factories themselves more dependable in servicing applications using AQuA.

7.7 Provide Additional Replication Schemes Beyond Ac-
tive and Passive Replication

The AQuA architecture currently supports passive and active replication. In
addition to these basic strategies, there are other strategies that have particular
performance and dependability properties that are useful in certain circum-
stances. This work would add more replication protocols, giving us the ability
to support a wider range of QoS requests.

7.8 Runtime Switching between Replication Schemes

This work would develop mechanisms that support switching between certain
replication schemes while an application is running. This capability is useful for
applications whose dependability and resource utilization profile requirements
change or need to adapt to changing operating conditions at runtime. The work
involves finding “changepoints,” where one can safely change from one scheme
to another, and coordinating stopping the old mechanisms with starting the
new ones.

7.9 Mechanisms to Switch between Dependability Strate-
gies at QuO Level

This work, which complements the previous item, would investigate adaptation
strategies that can make use of the capabilities developed in the previous-two
items.

7.10 Sophisticated Interface to the Dependability Man-
ager

This work would continue to enhance dependability management interfaces in
order to allow other resource managers and resource status information services
to provide information to Proteus useful for configuring for dependability, and
in providing dependability information to other services. It would enhance
the QoS request interface to allow more precise specification of dependability
requirements in order to select among the additional replication strategies that
will be developed.
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7.11 Toleration of Time Faults

This work would investigate the tolerance of timing faults within the AQuA

architecture. In particular, it would provide mechanisms to detect when a par-
ticular replica in a replication group is responding too slowly, and develop de-
pendability manager policies to diagnose and recover from such faults. Such a
capability would be useful in applications in which timeliness is an important
part of a dependability specification.

8 Conclusion

The AQuA project set out to demonstrate how the QuO architecture could
provide the property of dependability of a service. This goal was attained by
implementation of the AQuA system, released in conjunction with the QuO
system. The AQuA release provides dependability of objects (clients as well
as servers) by means of replication of the objects. The provision of depend-
ability is highly controllable and adaptable at run time. This technology has
been transferred outside the contractor and subcontractors, and has success-
fully been demonstrated both by the contractors and by an outside adopter.
The AQuA effort had synergy with other related projects at BBN, providing
additional payback during the contract period. Current ongoing related funded
work provides an opportunity for further payback from the future use of the
software and research base developed under AQuA.
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MISSION
OF
AFRL/INFORMATION DIRECTORATE (IF)

The advancement and application of information systems science and
technology for aerospace command and control and its transition to air,
space, and ground systems to meet customer needs in the areas of Global
Awareness, Dynamic Planning and Execution, and Global Information
Exchange is the focus of this AFRL organization. The directorate’s areas
of investigation include a broad spectrum of information and fusion,
communication, collaborative environment and modeling and simulation,
defensive information warfare, and intelligent informatipn systems

technologies.




